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The variational problem introduced by Howard (1 963) for the derivation of an 
upper bound on heat transport by convection in a layer heated from below is 
analyzed for the case in which the equation of continuity is added as constraint 
for the velocity field. Howard’s conjecture that the maximizing solution of the 
Euler equations is characterized by a single horizontal wave-number is shown to 
be true only for a limited range of the Rayleigh number, Ra. A new class of 
solutions with a multiple boundary-layer structure is derived. The upper bound 
for the Nusselt number, Nu,  given by these solutions is N u  < (Ra11035)t in the 
limit when the Rayleigh number tends to infinity. The comparison of the 
maximizing solution with experimental observations by Malkus (1 954a) and 
Deardorff & Willis (1967) emphasizes the similarity pointed out by Howard. 

1. Introduction 
The object of zt theory of turbulence is to derive from the basic equations 

expressions which describe the mean properties of the turbulent flow in terms of 
externally given parameters. The basic difficulty encountered by the theoretical 
analysis arises from the fact that a description in terms of mean quantities neces- 
sarily has to be incomplete. The equations for the mean quantities which are 
obtained by corresponding averages of the basic equations have the property 
that there are always more dependent variables than equations. This gap of 
information is usually closed by the introduction of assumptions which cannot 
be free from arbitrariness. An alternative and perhaps more natural way is to 
derive bounds for the mean quantities. In  this case the lack of information corre- 
sponds to the partial indeterminacy of the final result. 

The latter theoretical approach to turbulence was first used by Howard (1963) 
in his work on turbulent convection in a layer heated from below. Following 
earlier ideas of Malkus (1954 b)  Howard analyzed a variational problem which 
enabled him to derive an exact upper bound for the convective heat transport. 
Howard’s theory is of considerable importance since it can be shown (Busse 
1969) that analogous bounds can be derived in a great variety of turbulent 
transport processes. For the derivation of the exact upper bound, Howard has 
used only the information contained in the two power or dissipation rate integrals 
of the basic Boussinesq equations. By taking into account supplementary infor- 
mation about the turbulent convection, the bound on the heat transport can be 
improved. In  principle this method allows a systematic approximation of the 
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solution which maximizes heat transport among all possible solutions of the 
basic equations. A most significant step in this direction is the solution of the 
variational problem under the additional constraint of the equation of continuity. 
Howard has solved the corresponding Euler equations by restricting the analysis 
to separable solutions. He conjectured that the unknown class of solutions for 
which the equations do not separate do not lead to a higher bound on the heat 
transport. 

The present paper gives an extension of Howard’s work to which we shall 
refer in the following as (H). By deriving a new class of non-separable solutions, 
it  will be shown that Howard’s conjecture becomes incorrect for sufficiently 
large Rayleigh numbers. The solutions are characterized by a structure of 
subsequent boundary layers in each of which the horizontal dependence is 
determined by a certain wave-number an. Howard’s ‘single a solution’ can be 
regarded as the first member in this class of ‘multi a solutions ’. There are strong 
reasons, though no formal proof, that this class of solutions describes the correct 
upper bound on the heat transport among all possible solutions of the Euler 
equations. 

The paper starts with the formulation of the variational problem in $2.  The 
difficulty of solving the variational problem originates from the fact that the 
Euler equations allow an infinite manifold of solutions, each of which corresponds 
to  a relative extremum of the variational functional. The solution corresponding 
to the absolute extremum has to be determined by additional differentiation with 
respect to certain parameters. The complete manifold of solutions, however, is 
not known. Using boundary-layer analysis we shall derive in $ 3  the class of 
multi a solutions. The upper bound for the turbulent heat transport given by 
these solutions is discussed in $ 4. The process by which one solution follows the 
other in providing the upper bound can be compared to the process of subsequent 
instabilities, as will be shown in Q 5. 

Although the extremalizing solutions of the variational problem are only 
mathematical tools to determine the upper bound for the heat transport, they 
have physical significance beyond this purpose. They are of obvious interest as 
solutions of the strongly non-linear Euler equations which rather closely re- 
semble the basic Boussinesq equations. There seems to  exist, however, an even 
more direct relation. It is well known that the static state of pure heat conduction 
can be considered as the solution which minimizes heat flux at  a given tempera- 
ture difference. The convective state seems to tend toward the other extreme. 
The hypothesis that the physically realized convection maximizes the heat 
transport among all possible solutions of the basic equations was first used in 
the theoretical analysis by Malkus (19543). If this hypothesis is approximately 
correct, certain similarities can be expected between the structure of turbulent 
convection and the extremalizing solution of the variational problem. The 
experimental observations show indeed such a correlation to a remarkably high 
degree. Howard has demonstrated this fact by comparing the single cc solution 
with data obtained by Townsend (1959). Recently new experiments have been 
performed by Deardorff & Willis (1967). It will be shown in $ 6  that their measure- 
ments reflect characteristic properties of the maximizing multi a solutions. 
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2. The formulation of the variational problem 
The idea of Howard's variational method for obtaining upper bounds on the 

convective heat transport is to determine the maximum of the heat transport 
among a manifold of functions, which contains all possible solutions of the basic 
equations. In  place of the velocity and temperature fields satisfying the equation 
of motion and the heat equation, the class of ' velocity ' and 'temperature ' fields 
is considered which satisfy only certain moments of the equations. The determina- 
tion of the maximum of the convective heat transport among this enlarged class 
of fields by a variational problem provides the upper bound on the heat transport 
of the physically realized convection. 

The introduction to the problem of convection in a layer heated from below 
can be kept short, since a detailed description of the problem is given in (H) as 
well as in many other papers on this subject. As basic equations the Navier- 
Stokes equations for the velocity vector v and the heat equation are assumed in 
the form of the Boussinesq approximation. We shall use a Cartesian system of 
co-ordinates with the origin in the centre between the rigid infinitely extended 
parallel plates which bound the fluid. The direction of the z co-ordinate is chosen 
perpendicular to the plates opposite to the direction of gravity. The temperature 
field is divided into two parts, a part T depending on z only and equal to the 
horizontal average of the temperature, and the remaining fluctuating part 0. 
The temperatures at  the boundaries are given constants, Tl and T2, corresponding 
to the assumption of infinitely conducting plates. In  the usual dimensionless 
form with the distance d between the plates, d2/K,  (T, - Tl)/Ra, as the basic scales 
for length, time and temperature respectively, the Boussinesq equations are: 

I v . v  = 0, 

I aT 
Ae-w- = v.ve-v.ve+-e,  

az 

a2T a - a 
-=-ww8+-T. 
a22 az at 

The bar indicates the average with respect to the horizontal co-ordinates. X is 
the unit vector in the direction of the z co-ordinate; w is the z component of the 
velocity vector. 

In  accordance with the separation of the temperature field into its two parts 
0 and T ,  and the absence of a mean velocity component, the following property 
has to be satisfied: 

The functions v, 8 are bounded, and the horizontal averages of products 
of these functions like we do exist. 

We shall use an additional property which can be considered as part of the 
definition of turbulent convection in a stationary state : 

(2.2) 

The horizontal averages, in particular a, are time independent. (2.3) 
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This property allows the integration of the last equation of (2.1), 

dT _ -  - -Ra-(wB)+i6 ,  
dz 

with the angle brackets denoting the average over the entire fluid layer. The 
boundary conditions determine the constant of integration, Ra +(we), which 
is the dimensionless heat flux traversing the layer. 

By multiplying the first equation of (2.1) by v and the third equation by 8 and 
averaging the equations over the fluid layer, the first moments of the equations 
are obtained which are called ‘power integrals’ in Howard’s paper: 

In  deriving these relations the equation of continuity has been used to transform 
the advection terms into surface integrals. These integrals vanish owing to the 
condition w = 0 at  the boundary and to the fact that the contributions from the 
surface which bounds the fluid at  infinity with respect to the horizontal dimen- 
sions can be neglected in comparison with the volume integrals. Relations (2.5) 
differ from the corresponding relations (7) and (8) in (H) only in respect that BRa 
replaces Howard’s T. 

The variational problem is to determine the maximum of the convective heat 
transport ( w e )  at a given Rayleigh number Ra. As competitors all fields v, 8 are 
admitted that vanish a t  x = & 3, possess the properties (2.2) and (2.3), and 
satisfy the equation of continuity and relations (2.5). They do not have to satisfy, 
however, the Boussinesq equations. Equations (2.1) aside from the continuity 
equation do not enter into the problem being considered in this paper except in 
the derivation of (2.5). For convenience we use the same symbols v, 8 as before, 
keeping in mind that they represent generalized fields which no longer have the 
physical meaning of velocity vector and temperature. 

Instead of asking for the maximum ,u of {we)  at a given value of the Rayleigh 
number, we can ask for the minimum R of the Rayleigh number as a functional 
of v, 0 at a given value p of {we). The equivalence of both problems can be 
shown by proving that R(p)  is a bounded monotone function for all finite values 
of p. The second problem allows a particularly simple formulation: 

Given ,u > 0, f ind  the minimum R ( p )  of the functional 

among all jields v, 8 that vanish at z = f 8, satisfy the equation of continuity, and 
have the properties (2.2), (2.3). 
Since the functional (2.6) is homogeneous of degree zero with respect to v as well 
as to 8, the amplitude of both quantities is left undetermined for any solution of 
the variational problem. This fact allows us to impose 

(we> = P, (IV x v12) = p, (2.7) 

as normalization conditions. Thus the first of relations (2.5) is automatically 
satisfied, while the second is easily recognized in the definition (2.6), where 
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9 ( v ,  6, p)  stands for the Rayleigh number Ra considered as a functional of v, 8, 
and p. The formulation of the variational problem given above differs slightly 
from the formulation P 2  in (H). W / p  and p-1 correspond to the variables 9 and 
h respectively used in (H). The proof for the monotonicity of R(p)  follows in 
complete analogy to the proof given by Howard. 

Another step in the simplification of the variational problem is the elimination 
of the continuity equation as a side condition. An arbitrary vector field v satis- 
fying V .v = 0 can be represented by 

v=Vx(VxA)v+VxA$b.  

The vertical component of the vector field v in this representation 

and the dissipation term can be written 

( I V X V ~ ~ )  = -(vhhA2v)+($bAA2$). 

Since w does not depend on $b the minimum of the functional (2.6) obviously is 
reached in the case $ = 0, i.e. when the vertical component of vorticity of v 
vanishes. Thus the number of varying functions in (2.6) has been reduced to 
v and 6. 

Since the normalization condition (2.7) does not enter the actual variational 
problem, we replace it for the following discussion by the more convenient 
condition 

I (we) = 1, 

(ww) = (66). 
(2.11) 

3. Boundary-layer solutions of the variational problem 
The homogeneity of the variational problem (2.6) with respect to the horizontal 

dimensions suggests that the solutions of the corresponding Euler equations 
have an x, y dependence in the form of waves. We assume for this reason 

where #n(x, y) satisfies the relations 

and 

The functions #%, wn, 6, and a, will in general depend on the choice of N .  In  this 
section, however, N is regarded as a given arbitrary integer and the indication 
of the dependence of N will be neglected. In  the case N = 1, (3.1) reduces to the 
separable form of solutions considered by Howard. 

Following the analysis in (H) we shall use boundary-layer methods to solve the 
variational problem in the limit when p tends to infinity. Since in this limit the 
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second term on the right-hand side of (2.6) becomes dominant, it can be assumed 
that the integrand in 

((3 - ( ~ 6 ) ) ~ )  = (a - ( ~ 6 ) ) ~  dz (3.3) 

vanishes throughout the interior of the layer and contributes to the integral 
only in regions with a thickness of the order p-’ adjacent to the planes z = f 4. 
r is a positive number to be determined. Close to the boundary a rapid change has 
to occur in the z dependence of v and 8. Since the dissipation term in functional 
(2.6) in general assumes a minimum when the horizontal scale of v, 0 is com- 
parable to the vertical scale, we allow for a sequence of different boundary layers 
by which the horizontal scale is adjusted from its interior value to its value at  the 
boundary. The thickness of each boundary layer is supposed to be large in 
comparison to the thickness of the following layer, and w8 is supposed to be 
approximately equal to one in all but the last of the boundary layers, where it is 
still o( 1). Accordingly we introduce boundary-layer co-ordinates 

(3.4) 
for n = 1, . . . , N with 9-N = r .  We assume that w,, 6, differ from zero essentially 
only in two successive boundary layers, 

w,(z) = p-sndn(Cn-l), 6,(z) = psn6n(Cn-l) for (4 T z )  M o(p-+n-i), (3.5) 

wn(z) = p-Pnan(Cn), 6,(z) = pPn8,(Cn) for ($7 z )  M o(p-”n). (3.6) 

cn = p y Q  T 2) 

For all but the last boundary layer we have 

ui = pqn b i  
a,#, +dn+16n+l M 1. 

We set 

and assume that b i  as well as a,, d,, #,, gn are quantities of the order one inde- 
pendent of p. The boundary-layer approximation of the right-hand side of (2.6) 
yields 

A(@), e(N); p)  = pl+x 

N N 
x 2 prn+2Pnlom &2dCn + 2 b;pqn+n-i+%z ( n=l n=2 

x jOm 6:dcn-l +pqib:]. (3.9) 

In  order to distinguish the boundary-layer approximation from the exact 
functional 9 ( d N ) ,  W); p)  we have denoted it by the superscript A. In  addition 
to the terms neglected according to the boundary-layer assumption, we have 
neglected 

N 
(3.10) 



Heat transport by turbulent convection 463 

which represents the last term in the following decomposition of the viscous 
dissbative term 

I 
~~~ 

a 2  
- (vAAA,v) = ( 1 A x V a22 o 1 ') + (Ih x VA,v[ 2) + 2 ( 1 A2v 1'). (3.1 1 )  

According to Schwarz's inequality the last term on the right side of (3.11) cannot 
exceed the sum of the first and second terms. For this reason neglecting (3.10) 
cannot change the order of magnitude of the minimum of 92(v(", 0"); p) 
which will be determined in the next paragraph. It will turn out subsequently 
that (3.10) is in fact of smaller order of magnitude than the other terms in the 
first wavy bracket of (3.9) 

The functional (3.9) reaches its minimum as a function of the variables r,, qn, 
pn and s, when the maximum of the exponents of ,u in the expression on the 
right-hand side of (3.9) reaches its minimum. This minimum corresponds to the 
case when as many as possible of the exponents attain the same maximal value 
Since there are 4 N  - 1 independent variables r,, q,, pn and s,, at least 4N 
exponents can be chosen to be equal. The particular choice of the following 
4 N  - 1 equations 

A 

I 1 - r  N -  - 4rN-qN = 4rN-l-qN-l = ... = 4rl-ql 

= 2qN - 2rN-1 = 2qN-1- 2rN-2 = . . . = 291 ; 

(3.12) 

(3.13) 

Thus I?&) is of the order p21(3-4-N) and all terms in the wavy brackets are of the 
order p11(3-4-N). The choice of equations (3.12) has been induced by the fact that 
all variables occur independently with both signs. Hence any deviation from the 
solution (3.13) will lead to an exponent larger than 2/ (3  - 4-9 .  

The functions an, Gn, on, on will be determined b,y the Euler equations which 
are the necessary conditions for an extremum of 9 ( d N ) ,  W); p),  

(n=1, ..., If), (3.14) 
Do &:/b: - pT~"fi ( 1  - anon - On+,) 8, = 0 
D,,, 0: - prN-rn ( 1 - an 8, - Gn+, 6n+l) an = 0 

Here and in the following discussion G N f l ,  
abbreviations 

are to be replaced by zero. As 

(3.16) 
n=2  

N 

Do [ n=l $ . I+m(8,)2d[n+ 0 
n= C 2 

(3.17) 
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have been introduced. A consequence of (3.14) and (3.15) is 

I De(8"2>/bi = Dw(8ha), 
Def& = DWR+1, 

(3.18) 

from which 

and hence 
D e P ,  - a 3  = D,(D, - b?), 

Do = 0, E D 
A 

can be concluded since 9 diverges if b2, vanishes. According to (3.18) iEn+l is 
equal to on+, and as long as it is non-vanishing 

(1 - 8, 8, - tZn+l Gn+l) =  urn-'^ b:+, D (3.19) 

holds for n = 1, . . . , N - 1. This relation indicates that relation (3.7) cannot be 
satisfied exactly. The contribution of (3.19) in the integral (3.3), however, is 
negligible. Equation (3.19) can be used to replace the corresponding term in 
(3.14) as long as anon differs from one. In  the region where an&, has approached 
unity, ZZ,+~ and 6n+l vanish and (3.19) no longer holds. In  this case the condition 
&,On = 1 allows us to  replace (3.14) by 

(3.20) 

I n  the region described by this equation w, has to tend to infinity in order to 
join ppn@, while &: and &; have to  tend to zero in order to yield finite values for 
the integrals occurring on the right side of (3.16). This condition together with 

(3.21) 
the condition 

willsuffice todetermine thesolutionof (3.14), (3.20). Byintroducingnewvariables 

8, = 8; = 6, = o at cn = o 

6 = Cnbibi+l, 
h 

S2 = 8, bz* b;+,, 
A 
@ = 6 bib-5 

It n n+lt 

(3.14) and (3.20) can be transformed into 
A h  

Q Z ' V - 0  = 0 
A h  

and 

(3.22) 

(3.23) 

(3.24) 

respectively. The solution of (3.23) and (3.24) together with the corresponding 
boundary conditions is given in the appendix. In  the following discussion we only 
need the value 

3p = /om6"2d~+/om(l - 6 6 ) d c  = 1-847. (3.25) 

In the case n = N the factor of 6,, 8, in (3.14) cannot be replaced by a constant 
and a change of variables similar to  (3.17) with D in place of b;fl leads to the 
equations 

} 
Q'V- (1 - Q O )  0 = 0, 

@"+ (1 - QO) Q = 0. 
(3.26) 



Heat transport by turbulent convection 465 

This system of equations together with the corresponding boundary conditions 
has been solved in (H) with the result 

a = jOm f l”2dg  = /om@’2d[ = - (1 - S10)2d[ 5 0.337. (3.27) 

The last step in the solution of the problem is the determination of the variables 

: /om 

6:. Using (3.13), (3.25), (3.27) in (3.9) we get 

&(@N)) ow); p) = /~21(3-4-~) {bj$D)8g + D2}, (3.28) 

with 

A 

By differentiation of .% with respect to bn we obtain as the necessary condition 
for a minimum 

After simple calculations these relations yield 

bd(3-4-N) 1 = 4-6N ((r//j)3 (/j44)4(1-4’--”) (1 - 4 - ~ ) - 2 , )  

b 44 1-4-n+1 

b, = b14n-1[-$-] for n 2 1. 
(3.29) 

A 

Using these results the minimum f i (N) ( ,u )  of 9 ( d N ) , / 3 ( N ) ; , u )  can be expressed by 

with 

which represents the main result of this section. 
BCN)in fact satisfies the normalization condition 

- (O(N)A,dN)) = 1 assumed in the definition (3.9) of 9. The proof follows readily 
by the following consideration. By multiplying the first equations of (3.14) and 
(3.15) by 8, and G,+l respectively and integrating the equations over 5;, and 
using (3.7), we obtain 

We note that the solution 
A 

(3.31) 

for all n less than N .  The corresponding integral for n = N with vanishing 
GN+l, 8N+1 can be evaluated using the property 

(3.32) 

30 Fluid Mech. 37 
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of the equations (3.26),  (3.27).  Finally, the deviation from unity of Gl(z), o1(z) 
has to be determined by the corresponding Euler equations 

Db2 1P 2/(3-4-N)G1 - p( 1 - Gl 01) Ol - Bo1 = 0,  

Db2 1P 21(3-4-N) Ol - p( 1 - 8, 01) Gl - BS, = 0. 

The solution of these equations gives Gl = Ol as has been concluded before and 

(3.33) 1 = p-l(&-b2,Dp2/(3-4-N)) = , ,4+~3(4N-$)b?D.  

Using (3.31),  (3.32) and (3.33) it  can now be shown that 

is vanishing: 

= 0. 

4. The upper bound for the convective heat transport 
Before we apply the solutions obtained in the preceding section to produce the 

upper bound for the convective heat transport, we wish to draw attention to 
a special feature of the variational problem. The upper bound ,u(Ra) for the con- 
vective heat transport and the fact that (we) has to be positive provide a neces- 
sary condition for the realized convection. It is a remarkable property that the 
necessary condition coincides with the sufficient condition in the limit when 
p tends to zero. In  this case the second term in the definition (2.6) of the functional 
.% vanishes and the variational problem reduces to the variational problem by 
which the critical Rayleigh number R, for the onset of infinitesimal instabilities 
in the static fluid layer is determined. It is well known that the minimum 
R(0) = R, of the functional 9 in this limit is attained by a solution of the form 
(3 .1)  with N = 1 .  Howard has used the known solution to determine also the 
derivative of R(p)  with respect to ,u in the limit p = 0 :  

R(0) = 1707.8, d ~ ~ ) ! p = o  - = 0.6919. 

Since R(p)  is a monotone function, a fairly good description of the function 
R ( p )  is given, if its behaviour for large values of ,u is known. In  the preceding 
section we have calculated minima of the functional (2 .6)  in the limit p+ 03 for 
solutions of the form (3 .1) .  Since the general class of solutions leading to a relative 
minimum of the functional (2 .6)  is not known, we make the assumption that the 
absolute minimum of the functional can be found among the class of relative 
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minima {R(N)(p)) corresponding to solutions of the form (3.1) with a multiple 
boundary-layer structure. 

Owing to the asymptotic analysis, the functions &(lv)(p) derived in 0 3 coincide 
with the exact minima RW)(p) only in the limit when p tends to infinity. We 
expect, however, that for large but finite values of ,u a reasonable approximation 
of R(N)(p) will be provided by .@N)(p). It can be seen from the representation 
(3.30) that the absolute minimum &(p) among the class of functions {m)(p)} is 
attained by one after the other starting with.&(p). Thus f i (p) is a smooth function 
of p except for an infinite number of kinks which occur when fi(N+l)(p) drops 
below A(N)(p). 

For comparison with the experimental data it is convenient to draw the 
inverse function F(R) of f i (p)  divided by R, which corresponds to the absolute 
maximum among the class of function {$W)(R)/R}. ,G(R)/R gives an upper bound 
for the ratio between the convective part of the heat transport H, and the con- 
ductive part H,. This ratio differs by one from the Nusselt number which is 
defined as the ratio between the total heat flux H, + H, traversing the convective 
layer and the heat transport H, in the static layer corresponding to reversed 
temperatures at  the boundaries, 

N u  = 1 i- HJH,. 

In figure 1 the functions ,P)(Ra)/Ra have been drawn only for N = 1,2 ,3  because 
the curves become indistinguishable for larger values of N .  

It is very likely, although difficult to prove, that the boundary-layer approxi- 
mation fi(N)(p) is smaller than the corresponding exact dependence RW)(p) since 
many positive terms have been neglected in the definition of the functional (3.9). 
An approximation for BW)(,u) from above is given, of course, by the value of (2.6) 
for an arbitrary trial field of the form (3.1). A convenient field for this purpose is 
the boundary-layer solution v(N), V )  derived in the last section. In  the earlier 
version of this paper (Busse 1968) all terms of smaller order which have been 
neglected in the expression (3.9) were evaluated. In  figure 1 the resulting lower 
bounds for the exact dependences of p(lv)(Ba)/Ra have been indicated by dashed 
lines. The plot indicates that the boundary-layer approximation does not give 
a good description of the positions of the kinks in the exact upper bound p(Ra)/Ra 
whereas the quantitative approximation of this function by ,G(Ra)/Ra is reason- 
ably close. 

In the limit when p tends to infinity the minimum f i (p)  among the class 
{fi(N)(p)} approaches 

(4.2) 

This asymptotic minimum differs only by a factor of about 3 from the minimum 
of functional (2.6) in the case when the equation of continuity is neglected as 
constraint. According to (H) the exact asymptotic value of the latter minimum 
is given by 

The upper bound corresponding to this function is also plotted in figure 1. 
It is of interest to discuss in more detail the structure of the multi a solutions 

VUV), P'). In  figure 2 the wavelengths ZkN) = 2n/akN) have been drawn as functions 

&"(p) = 3g(p2/349)4 = 10-114,&. 

R,(p) = 4-34p3. (4.3) 

30-2 
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of Ra starting at  the point at which ,@)(Ra) begins to describe the upper bound 
for the heat transport. The wavelengths as well as the thicknesses 

dkN) = p+n(b,b~+,)-* (4.4) 

of the corresponding boundary layers become shorter with increasing Ra. Since 
the solutions tend to adjust the horizontal scale to the vertical scale, ZkN)(Ra) 
corresponds roughly to the harmonic mean between dkN)(Ra) and dkN-'l(Ra). 

100 

10 

1 I I I I 

103 104 105 106 107 108 

RC4 

FIGURE 1. The upper bound for the Nusselt number in dependence on the Rayleigh 
number in comparison with experimental results (shaded region). The upper bound corre- 
sponds to the maximum among the curves N = 1 , 2 , 3 .  The upper bound derived without 
the constraint of the continuity equation is given by (I). The dashed lines give an estimate 
of ,dN'(Ra)/Ra from below. 

By the following definition we introduce the solution de), ece) which corresponds 
to the minimum B(p), 

(4.5) 
whenever W ) ( p )  = B(p)  for N = 1, .... 
This solution, which will be called the 'bounding field', is a discontinuous function 
of p at the points where &(p) has a kink. In  the limit of p tending to infinity, 
however, the bounding field as well as B(p) can be considered as smooth functions 
of p. For this purpose we eliminate the parameter N by determining the mini- 
mizing N as a function of p. Using x = 4-N we obtain as the condition for the 

1 (&), e q  = (w"), OW)), 
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10 

where terms which are vanishing in the limit when x tends to zero have been 
neglected. According to (4.6) the minimizing value of N, N,, in the limit of largep, 
is given by x i 1  = 4Ne = (pg#/?+4+)+, (4.7) 

1 

We use this relation to evaluate the asymptotic properties of the bounding field. 
Its structure is characterized by the fact that the thickness of its outermost 
boundary layer becomes independent of p 

The same fact holds for the wavelength of the interior 

Both values (4.8) and (4.9) have been indicated in figure 2 .  It is apparent that the 
asymptotic form of the bounding field holds well even for N, = 2,3,  when it is 
kept in mind that (4.8) and (4.9) have to be regarded as average values of the 
functions llN)(B) and diN)(R) in the region where @)(p) gives the absolute mini- 
mum. The ratio of the thicknesses of two subsequent boundary layers becomes 
independent of n as well as independent of p, 

(4.10) 
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The thickness of the last innermost boundary layer is given by 

d!$ = (D/b,p)* = (J34;lp)* 
and the corresponding horizontal wavelength is 

I!$ = 2nla&) = 2rr/(a4J3-44tp/4)4. (4.12) 

Thus the scale of the bounding field decreases by steps with a factor of from 
a value of the order one in the interior to a value of the order p-* at the boundary. 

The fact that the boundary layers fill a considerable portion of the interior 
according to (4.10) and that the thicknesses of two subsequent boundary layers 
differ only by a factor of four indicates that the boundary-layer approximation 
of the bounding field does not improve asp tends to infinity. Because ofthe double 
limit of N as well as p tending to infinity, an asymptotic case in which the 
boundary approximation of the minimizing multi a solution becomes exact does 
not exist. We consider, however, the deviations from the assumptions on which 
the boundary-layer analysis is based as not so dangerous that the derived results 
become qualitatively incorrect. A justification for this view is the fact that the 
upper estimate for R")(p) mentioned above does not diverge when N tends to 
infinity at  a given value of p. It differs only by a factor of about 2 from the asymp- 
totic expression (4.2). 

(4.11) 

5. A necessary condition for the bounding field 
In  order to illustrate the physical meaning of the solutions described in the 

preceding sections we shall present a consideration by which it was originally 
deduced that the single a solution dl), 8(l) cannot describe the upper bound for 
large Rayleigh numbers. Let vo, 8, be a solution of the Euler equations corre- 
sponding to a minimum of the functional (2.6). For simplicity we assume that 
Ro(p) is proportional to p m  for large p with m < 1 and that accordingly wo80 
differs from its average value unity essentially only over a distance d p - l  from 
the boundaries. For convenience we assume that the second normalization 
condition in (2.11) is replaced by 

- 

(IVOOlz) = - ( v ~ A A A , w ~ )  D o p b ,  

Do and d are constants independent of p. We now consider a perturbation vl, 8, 
of the solution vo, O0 with the property that all averages of mixed products like 
w08, vanish. The equations for vl, 81 become linear when the amplitude of the 
perturbation is sufficiently small: 

__ 

(5.1) I .LloAAA2~l + (a - 1) A, 8, - R o p - h  A, 81 = 0, 

Do A81 + ~ ' 4 ~  ( wX- 1) A2 ~ 1 -  Rop'-im A2 v 1 =  0. 

Close to the boundary the third term in these equations can be neglected in 
comparison with the second term, and the equations become essentially identical 
with those governing the marginal stability of a static layer heated from below. 
A solution of (5.1) with a characteristic scale given by the thickness dpm-1 of the 
layer in which w080 is less than unity can exist when 

__ 

p2*"/: 2 R, .LL~-~~  la 4 (5.2) 
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where the critical Rayleigh number R, is a constant. Relation (5.2) is satisfied 
for sufficiently large values of ,u when m > Q .  In this case a new solution 
v,+vl,8,+8, of the Euler equations is possible, which for small but finite 
amplitude of v1,8, leads to a value of R ( p )  below Ro(,u), as can be shown by 
a more detailed analysis. This ‘instability ’ of vo, 8, as extremalizing solution is 
very similar to the process by which v(N), 8cN) is superseded by v(N+1), O(N+l) as 
extremalizing solution. Using a physical terminology the latter process could 
be called a ‘finite amplitude instability ’. 

The above arguments as well as the actual solution &)(,u) derived in $4 prove 
that R ( p )  should grow like ,u* or less asymptotically. The latter possibility, how- 
ever, is excluded by the exact solution (4.3) of the variational problem without 
the constraint of the equation of continuity. The fact that &‘)(p) differs only 
by a relatively small factor from the expression (4.3) is another argument for our 
conjecture that the absolute minimum R ( p )  of the functional (2 .6)  is described 
by the class of functions {R(N)(p)}  corresponding to the multi a solutions. 

6. Comparison with experimental observations 
The theory outlined in the preceding sections gives bounds for the heat trans- 

port by turbulent convection. The fields v and 0 have been introduced solely 
as mathematical tools for the solution of the variational problem. In principle the 
extremalizing solution can be disregarded after the bound on the heat transport 
has been obtained. The structure of the bounding field, however, seems to have 
so much physical content that it becomes an attractive idea to compare it with 
the structure of the observed turbulent convection. 

There are also some rational reasons for this comparison. From the analysis 
the importance of the horizontal scale of the convection has become evident. 
A certain value of the heat transport imposes restrictions on the spectrum of 
convective motions by which the heat can be transported at a given Rayleigh 
number. In  the limit when the convective heat transport vanishes at the critical 
value R, of the Rayleigh number, the horizontal wave-number and even the 
z dependence of the realized convection are the same as for the bounding field. 
At higher Rayleigh number the observed heat transport is relatively close to the 
upper bound although the dependence of the Nusselt number appears to tend 
towards Rag rather than Rat.  These facts and others which will become evident 
in the further discussion indicate a close correlation between the experimentally 
observed convection and the solution of the variational problem. 

The correlation appears striking enough to suggest a common principle behind 
the extremalizing multi a solution and the observed convection. Such a principle 
is the hypothesis that the realized solution of the Boussinesq equations is 
identical with the solution of maximum heat transport a t  a given Rayleigh 
number. This hypothesis was introduced by Malkus (19543) in the theoretical 
analysis and was used later by Malkus & Veronis (1958) as a stability criterion. 
Although the hypothesis cannot be regarded as an exact general principle, it 
seems to be a rather good characterization of the realized convection. For 
Rayleigh numbers close to the critical value R, at which the static layer becomes 
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convectively unstable, the hypothesis has been proved (Busse 1967b) to hold 
exactly, provided that the Boussinesq equations with constant expansion co- 
efficient are assumed. 

The physical realization of a solution of the basic equations depends on its 
stability. In  order to include non-stationary solutions of statistically stationary 
nature, we use the term ‘stability’ for stability of the structure of the solution 
as reflected in its r.m.s. values. The fact that the property of stability is closely 
related to the heat transport can be understood when the stability of the region 
close to the boundary is considered. In this boundary layer, in which the heat is 
transported mainly by conduction, the velocity tends to zero. Hence it is not 
unreasonable to apply as a crude qualitative criterion for the stability of this 
layer the Rayleigh stabiIity criterion for a static layer heated from below. 
Accordingly, the layer with the thickness 6 will become unstable with respect 
to disturbances of the characteristic scale 6 when the dimensionless gradient of 
the mean temperature exceeds the value R,C~-~. Since the change of mean tempera- 
ture occurs mainly in the layer of thickness 6, the criterion for instability can be 
expressed by the dimensionless heat transport H ,  6 = Ra/2H, The layer will be- 
come unstable unless the heat transport exceeds the lower bound : 

The conjecture that the physically realized convection is determined by the 
stability of the boundary layer is supported by measurements of the heat trans- 
port by Malkus (1954a) which show a sequence of kinks in the otherwise smooth 
dependence on the Rayleigh number. More recently the experiments have been 
repeated by Willis & Deardorff (1967). The phenomenon has to be interpreted 
as a sequence of instabilities, by which the convection changes its boundary- 
layer structure in discontinuous steps. The instability of the convection in the 
form of rolls (Busse 1 9 6 7 ~ )  probably corresponds to one of the kinks. We note 
the qualitative similarity between the heat transport curve and the upper bound, 
both characterized by kinks. The process by which the absolute extremum of the 
variational functional is reached by one solution after the other of the multi 
a solutions is closely related to a sequence of finite amplitude boundary-layer 
instabilities as has been indicated earlier in the preceding section. 

Owing to the boundary-layer approximation the description of the bounding 
field v@, is incomplete and not quite suitable for a quantitative comparison 
with the measured r.m.s. values of the velocity components and the fluctuating 
temperature field. With respect to qualitative features, the similarity between 
the bounding field and the experimental data by Deardorff & Willis (1967; here- 
after referred to as (DW)) is quite obvious. This fact is also apparent in the com- 
parison in (H) between Townsend’s (1959) measurements and the boundary- 
layer structure of the solution &), W). For the multi a solutions the decreasing 
dependence of e(N)with distance from the boundary is less pronounced and closer 
to the observed dependence of the temperature fluctuations. 

A characteristic property of the bounding field is the set of discrete wave- 
numbers describing the horizontal dependence. At first sight this property 
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appears as a typical unphysical feature, since turbulence is usually assumed to be 
associated with smooth spectra. The measurements of the spectrum of horizontal 
wavelengths h in (DW), however, exhibit a t  least two characteristic lines besides 
a smooth background spectrum. In figure 3 we compare the experimental results 
obtained in the centre of the convection layer with the corresponding wave- 
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FIGTJRE 3. Three graphs of the normalized cospectra of w and 8, observed by Deardoe & 
Willis (1967) a t  Rayleigh numbers 6.3 x lo5, 2.5 x lo6, 1.0 x lo7 respectively, are plotted 
on top of a figure showing Z\N) as a function of the Rayleigh number for N = 2,3,4. The 
three graphs have been arranged in such a way that the Rayleigh numbers of both plots 
coincide approximately at the level where the secondary maxima appear in the cospectra. 

lengths ZiN) = 2n/aiN) of the extremalizing multi a solutions. The lines ZiN)(Ba) 
are plotted for N = 2 ,3 ,4  starting at  about the Rayleigh number, where I;;”’(Ba) 
begins to represent the upper bound for the heat transport. On top of this graph 
data from (DW) taken at  three different Rayleigh numbers have been plotted 
in such a way that the Rayleigh numbers of both graphs coincide at  about the 
level where the secondary maxima appear. The data suggest that certain wave- 
lengths are distinguished. They seem to appear on the left side of the spectrum 
and to become shorter with increasing Rayleigh number until they disappear 
on the right side of the spectrum. The figure indicates the close relationship to 
corresponding behaviour of the interior wavelength of the extremalizing solution. 
The appearance of more than one of those characteristic wavelengths does not 
contradict the conjecture that turbulent convection tends to adjust to the 
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structure of the extremalizing solution. Since the values f i (N-l)(  Ra) and fi(N+l)( Ra) 
are very close to the maximizing value fi(N)(Ra), the turbulent convection 
tends to adjust alternately to the extremalizing and its neighbouring solutions. 

This interpretation of the occurrence of typical horizontal scales also explains 
the following paradox which has been discussed in papers on the convectioii 
problem. While the theoretical solutions always exhibit a horizontal scale which 
decreases with increasing Rayleigh number, a constant or slightly increasing 
horizontal scale is usually reported in experimental observations. The mechanism 
of instabilities by which new forms of convection with larger scales are introduced 
may be the answer to this paradox. The bounding field exhibits this behaviour. 
On an average, the interior wavelength stays approximately constant although 
the individual wavelengths ZkN) always decrease. 

It is of interest to note also the feature with respect to which the extremalizing 
solution differs from the experimentally observed fields. The time dependence, 
of course, of the turbulent convection does not have an analogue. Since only 
time-independent terms appear in the variational problem, the time dependence 
of the extremalizing solution is left undetermined. Another difference is the rather 
low correlation between the temperature field and the vertical velocity. Accord- 
ing to measurements reported by (DW), the correlation between 0 and w is only 
about 58 yo while the maximum heat transport corresponds to a correlation 
of 100%. For this reason quantities like the kinetic energy, or the average of the 
square of the temperature fluctuations which do not depend on the correlation, 
show a closer relation to the corresponding properties of the bounding field than 
does the heat transport. The qualitative difference between the measured de- 
pendence of the heat flux on the Rayleigh number and the Ra8 law of the upper 
bound may be due to the fact that only rather low Reynolds numbers of the 
convection velocity have been realized in the experiment. For this reason the 
asymptotic region has probably not yet been reached. This view is in keeping 
with arguments used by Kraichnan (1962) who proposes a dependence of the 
form Raglln Ra for the Nusselt number. 

The temperature field of a turbulent fluid without any heat sources has the 
property that maximum and minimum value of the temperature are attained 
at the boundary. This condition has not been imposed as additional constraint 
in the formulation (2.6) of the variational problem. It can be shown that the 
solutions dN), O(N) in fact violate this condition for sufficiently high values of p in 
the case N > 1. In the range of p, however, where &(p) = &(N)(,u) holds, the 
temperature corresponding to the function does not exceed the values at  
the boundaries. The analogue of the mean temperature gradient in the interior 
for the multi a solutions is given according to (3.33) by 

Using (4.2), (4.7) we find the following asymptotic dependence for the analogue 
of the interior mean temperature gradient in the case of the bounding field: 
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At Rayleigh numbers sufficiently high to produce a fully developed boundary- 
layer structure, it is difficult to observe experimentally a gradient of the mean 
temperature as small as that given by (6.3). For this reason data for a com- 
parison with this property of the bounding field do not exist. 

7. Conclusion 
The multi a solutions which have been derived to  obtain an upper bound for 

the convective heat transport apparently have physical significance beyond this 
purpose. The structure and the dependence of the bounding field on the Rayleigh 
number offer a guide line for the understanding of the differentiated structures 
and processes involved in the complex phenomenon which is called thermal 
turbulence. It will be shown in a forthcoming paper by applying similar methods 
to shear flow problems that the correspondence between the extremalizing 
solution of a variational problem and experimental observations holds in many 
cases of turbulence. The mathematical picture of turbulence as a manifold of 
solutions of the basic equations which tends to approach the idealized structure 
with the property of optimal transport is in many respects complementary to 
the assumption of randomness used in the statistical description of turbulence. 
Both views are reflected in the nature of the observed turbulence, and theories 
evolving from both sides may be able to close the gap in the theoretical description 
of turbulence. 

This work was started when the author participatedin the Woods Hole Summer 
Programme in Geophysical Fluid Dynamics in 1967 under the directorship of 
George Veronis. The author is grateful for the stimulation he received from 
discussions with Louis N. Howard and Willem V. R. Malkus. 

Appendix 
The linear equations (3.23) can be solved readily when the corresponding non- 

linear boundary conditions at  the point where Q 0 approaches unity are known. 
These boundary conditions are determined by the solution of (3.24) in the 
adjacent region. Since the genezal solution of (3.24) is not known, we have to 
use an approximation. Because Cl has to become a linear function asymptotically 

A h  

A 

i2 FZA([-[~) for t + o o ,  (A 1) 

we use an asymptotic expansion in powers of (&-,!j0)-l. From (3.19) we obtain 
the coefficients in this expansion: 

1 1 293 -...I. A sz = A ( [ - [ o )  1-  [ 12A4([-[~-270~8([-[0)4-907200A12(~-&,)s 

(A 2) 

At the point [* where the solution (A 2) of (3.24) joins the solution of (3.23), 6 
and its derivatives up to the third derivative have to be continuous. This require- 
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ment together with the condition that (Q20)' has to vanish a t  
following boundary conditions : 

A 1 

A A  

= $* gives the 

1 + ...) .) Q r r = - T  I+-- 
A 4  + 

6A3 ( 6OQ2Qr2 84Oh4df4 

1 .o 2.0 

E 
A h  

FIGURE 4. The boundary-layer solutions R, 0 and their product. 

In additioz the solution has to be normalized to give fl((*).@(k*) = 1. We 
eliminate 0 in (3.23) and obtain as general solution of the sixth-order equation 

A A 

A 3  
0 = Z (A,sinw,[+B,,cosw,t), 

u = l  

where w, are the three complex roots of w3 = 1. The boundary conditions a t  
[ = 0 and at  t = [* lead to 6 homogeneous equations which can be solved when 
[* is chosen appropriately. The lowest value for which a solution can be obtained 
is t* = 2.1025. The corresponding values of A,, and B, are 

A ,  = 0.58665, 

A ,  = 0.24532 +i0.19706, 

A,  = A,, 

B, = -0.41406, 

B, = 0.20703 - i0.35858, 

B, = B,, 
where in this etse th%bar$enotes the complex conjugate. 

For ,( > .$*, Q and 0 = Q-1 are determined by (A 2) with 

A = 0.6837, (*-(,, = 2.094. 
A A A h  

The functions 8, 0 ,  !2@ have been plotted in figure 4. 
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According to (3.23), (3.24) the integrals of 6 ' 2  and f i t t 2  should be equal. The 
higher derivatives, however, are rather sensitive to small changes in the approxi- 
mation. For this reason the integrals 

differ by more than one percent. For the numerical value of (3.25) we have used 
the mean value of (A 7 )  and the more exactly determined value of 

m A A  

(1 - !%') d< = 1.248. 
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